A robotic fish caudal fin: effects of stiffness and motor program on locomotor performance.

نویسندگان

  • Christopher J Esposito
  • James L Tangorra
  • Brooke E Flammang
  • George V Lauder
چکیده

We designed a robotic fish caudal fin with six individually moveable fin rays based on the tail of the bluegill sunfish, Lepomis macrochirus. Previous fish robotic tail designs have loosely resembled the caudal fin of fishes, but have not incorporated key biomechanical components such as fin rays that can be controlled to generate complex tail conformations and motion programs similar to those seen in the locomotor repertoire of live fishes. We used this robotic caudal fin to test for the effects of fin ray stiffness, frequency and motion program on the generation of thrust and lift forces. Five different sets of fin rays were constructed to be from 150 to 2000 times the stiffness of biological fin rays, appropriately scaled for the robotic caudal fin, which had linear dimensions approximately four times larger than those of adult bluegill sunfish. Five caudal fin motion programs were identified as kinematic features of swimming behaviors in live bluegill sunfish, and were used to program the kinematic repertoire: flat movement of the entire fin, cupping of the fin, W-shaped fin motion, fin undulation and rolling movements. The robotic fin was flapped at frequencies ranging from 0.5 to 2.4 Hz. All fin motions produced force in the thrust direction, and the cupping motion produced the most thrust in almost all cases. Only the undulatory motion produced lift force of similar magnitude to the thrust force. More compliant fin rays produced lower peak magnitude forces than the stiffer fin rays at the same frequency. Thrust and lift forces increased with increasing flapping frequency; thrust was maximized by the 500× stiffness fin rays and lift was maximized by the 1000× stiffness fin rays.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolutionary Design and Experimental Validation of a Flexible Caudal Fin for Robotic Fish

Designing a robotic fish is a challenging endeavor due to the non-linear dynamics of underwater environments. In this paper, we present an evolutionary computation approach for designing the caudal fin of a carangiform robotic fish. Evolutionary experiments are performed in a simulated environment utilizing a mathematical model to approximate the hydrodynamic motion of a flexible caudal fin. Wi...

متن کامل

Artificial Life 13

Designing a robotic fish is a challenging endeavor due to the non-linear dynamics of underwater environments. In this paper, we present an evolutionary computation approach for designing the caudal fin of a carangiform robotic fish. Evolutionary experiments are performed in a simulated environment utilizing a mathematical model to approximate the hydrodynamic motion of a flexible caudal fin. Wi...

متن کامل

The Structural Design and Control System of a Caudal Fin Robotic Fish

This article took the trevally crescent-shaped caudal fin mode fishes as bionic object, based on the biological observation and bionic research, established the fish swimming model of trevally crescentshaped caudal fin mode, and designed the three degrees of freedom, tailtail fins pectoral fin, robotic fish. It detailed focuses on the fish propulsion theory and robotic fish overall design, incl...

متن کامل

Evolutionary multiobjective design of a flexible caudal fin for robotic fish.

Robotic fish accomplish swimming by deforming their bodies or other fin-like appendages. As an emerging class of embedded computing system, robotic fish are anticipated to play an important role in environmental monitoring, inspection of underwater structures, tracking of hazardous wastes and oil spills, and the study of live fish behaviors. While integration of flexible materials (into the fin...

متن کامل

Thrust Analysis On A Single-Drive Robotic Fish With An Elastic Joint

This work simplified tuna’s swimming mode, then designed a single-drive robotic fish propulsion mechanism which including an elastic joint, and established the dynamics model of the mechanism. The thrust, resistance, resistance power on different peduncle oscillation parameters, and torsional stiffness of the caudal fin joint was simulated. The average thrust, maximum resistance and the average...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 215 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2012